PromptBase
Close icon
General
Home
Marketplace
Hire
Create
Login
Sell
Explore
🤖 GPT

Code Problem Solver Generator

Code Problem Solver Generator gpt prompt mini thumbnail
1Heart icon
Favorites
35Eye icon
Views
TestedTick icon
TipsTick icon
Do you need to code? Do you have a coding question or query that you want to solve? This prompt is your SOLUTION! Test the prompt "Code Problem Solver GENERATOR", and you'll get your Code READY to use in seconds based on your input. GAME CHANGER!
...more
$3.99
Get prompt
After purchasing, you will gain access to the prompt file which you can use with GPT or the app builder. You'll receive 20 free generation credits with this purchase. By purchasing this prompt, you agree to our terms of service.
Over 1 month ago

Prompt Details

Model
Chat - GPT-3.5 (gpt-3.5-turbo)
Token size
416 ($0.00080 / call)
Example input
1: [How can I add a new element to an array in Java] -------------- 2: [How can I implement a neural network using TensorFlow to classify images with high accuracy?]
Example output
1: // Initializing an array with some values int[] myArray = {1, 2, 3, 4, 5}; // Adding a new element to the end of the array int newValue = 6; myArray = Arrays.copyOf(myArray, myArray.length + 1); myArray[myArray.length - 1] = newValue; // Print the updated array System.out.println(Arrays.toString(myArray)); ---------- 2: import tensorflow as tf # Load the data mnist = tf.keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() # Normalize the data train_images = train_images / 255.0 test_images = test_images / 255.0 # Define the model model = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10) ]) # Define the loss function loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) # Compile the model model.compile(optimizer='adam', loss=loss_fn, metrics=['accuracy']) # Train the model model.fit(train_images, train_labels, epochs=5) # Evaluate the model model.evaluate(test_images, test_labels, verbose=2)
Browse Marketplace