PromptBase
Close icon
General
Home
Marketplace
Hire
Create
Login
Sell
Explore
🤖 GPT

Data Science Training Clustering Model

Data Science Training Clustering Model gpt prompt mini thumbnail
1Heart icon
Favorites
59Eye icon
Views
GPT-4
TestedTick icon
TipsTick icon
To become a Data Science is not easy but this prompt will help you to reduce a huge amount or your time and will built for you K nearest - neighbours or K-Means Clustering machine learning algorithm in Python.
...more
$3.99
Get prompt
After purchasing, you will gain access to the prompt file which you can use with GPT or the app builder. You'll receive 20 free generation credits with this purchase. By purchasing this prompt, you agree to our terms of service.
Updated: Over 1 month ago

Prompt Details

Model
Chat - GPT-4 (gpt-4)
Token size
68 ($0.00200 / call)
Example input
Here's how this code works: First, it imports the necessary libraries for data manipulation, K-Means clustering, and visualization. Next, it loads your dataset and selects the columns you want to use for clustering. It then defines the number of clusters you want to form. The code performs K-Means clustering on your data using the KMeans() function from scikit-learn. Finally, it visualizes the resulting clusters using the plt.scatter() function from matplotlib.
Example output
# Importing libraries import pandas as pd import numpy as np from sklearn.cluster import KMeans import matplotlib.pyplot as plt # Load the data data = pd.read_csv('raw_data.csv') # Select the columns you want to use for clustering X = data[['Feature 1', 'Feature 2', 'Feature 3', 'Feature 4']].values # Define the number of clusters you want to form num_clusters = 3 # Perform K-Means clustering kmeans = KMeans(n_clusters=num_clusters, init='k-means++', max_iter=300, n_init=10, random_state=0) y_kmeans = kmeans.fit_predict(X) # Visualize the clusters plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Cluster 1') plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Cluster 2') plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Cluster 3') plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c = 'yellow', label = 'Centroids') plt.title('Clusters') plt.xlabel('Feature 1') plt.ylabel('Feature 2') plt.legend() plt.show()
Browse Marketplace