Example output
I can generate a simulated output based on the described transformation using Python and pandas. Although I can't directly save files here, I can create and display sample data frames representing the expected output.
Let's simulate the output data frames in Python:
import pandas as pd
# Simulated aggregated sales data by month, product, and region
monthly_summary_data = {
'Month': ['2023-01', '2023-01', '2023-02', '2023-02'],
'Product': ['Product A', 'Product B', 'Product A', 'Product B'],
'Region': ['North', 'South', 'North', 'South'],
'Sales': [15000, 22000, 18000, 25000]
}
monthly_summary = pd.DataFrame(monthly_summary_data)
# Simulated total sales per month
total_sales_month_data = {
'Month': ['2023-01', '2023-02'],
'Sales': [37000, 43000]
}
total_sales_per_month = pd.DataFrame(total_sales_month_data)
# Simulated total sales per region
total_sales_region_data = {
'Region': ['North', 'South'],
'Sales': [33000, 47000]
}
total_sales_per_region = pd.DataFrame(total_sales_region_data)
print("Monthly Sales Summary:")
print(monthly_summary)
print("\nTotal Sales per Month:")
print(total_sales_per_month)
print("\nTotal Sales per Region:")
print(total_sales_per_region)
This Python code creates simulated data frames representing the expected output:
monthly_summary: Simulated aggregated sales data by month, product, and region.
total_sales_per_month: Simulated total sales figures for each month.
total_sales_per_region: Simulated total sales figures for each region.
Running this code would display the simulated data frames in the Python environment, providing a visual representation of the expected output structure and content.