PromptBase
Close icon
General
Home
Marketplace
Hire
Create
Login
Sell
Explore
🌀 Claude

Nlp Wizard Pro

Nlp Wizard Pro claude prompt mini thumbnail
1Heart icon
Favorites
22Eye icon
Views
CLAUDE-3-5-SONNET
TestedTick icon
TipsTick icon
4 examplesTick icon
Ultimate Natural Language Processing Assistant 💡 Transform complex NLP tasks into clear, actionable solutions! 🚀 This advanced prompt helps you master any NLP challenge with expert guidance. ✨ Perfect for developers, researchers, and data scientists who want to implement NLP solutions. ⚡️ Get professional NLP guidance in minutes!
...more
$9.99
Get prompt
After purchasing, you will gain access to the prompt file which you can use with Claude or the app builder. You'll receive 20 free generation credits with this purchase. By purchasing this prompt, you agree to our terms of service.
4 weeks ago
Related item

Prompt Details

Model
(claude-3-5-sonnet)
Token size
350
Example input
[TASK_TYPE]: Sentiment Analysis [EXPERIENCE_LEVEL]: Beginner [PROJECT_SCOPE]: Social media sentiment monitoring [SPECIFIC_REQUIREMENTS]: Real-time processing needed
Example output
I'll provide a comprehensive guide for implementing a real-time social media sentiment analysis system, tailored for beginners. 1. Project Overview & Architecture Let's design a straightforward but scalable system for monitoring social media sentiment in real-time. High-level System Design: - Data Collection Layer: Streams social media data - Processing Layer: Performs sentiment analysis - Storage Layer: Saves results - API Layer: Provides access to results Let me create a clear architectural diagram using Mermaid. ```mermaid flowchart TD A[Social Media Stream] --> B[Data Collector] B --> C[Text Preprocessor] C --> D[Sentiment Analyzer] D --> E[Results Storage] D --> F[Real-time API] subgraph "Processing Pipeline" C D end subgraph "Data Layer" E[(Database)] end subgraph "API Layer" F end ``` 2. Implementation Roadmap Let's build a Python-based solution using popular libraries. Here's our initial implementation: ```python # Required libraries import pandas as pd from textblob import TextBlob # Simple sentiment analysis for beginners import tweepy # For Twitter streaming (example social platform) from datetime import datetime ``` Data Preprocessing Steps: - Text cleaning (remove special characters, links) - Tokenization - Convert to lowercase - Remove stop words Let's implement a basic preprocessing pipeline: ```python import re import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords def preprocess_text(text): # Convert to lowercase text = text.lower() # Remove URLs text = re.sub(r'http\S+|www\S+|https\S+', '', text) # Remove special characters text = re.sub(r'[^\w\s]', '', text) # Tokenization tokens = word_tokenize(text) # Remove stopwords stop_words = set(stopwords.words('english')) tokens = [token for token in tokens if token not in stop_words] return ' '.join(tokens) ``` 3. Technical Deep-Dive Let's create a basic sentiment analyzer class: ```python import logging from textblob import TextBlob from datetime import datetime from collections import deque import threading import queue class RealTimeSentimentAnalyzer: def __init__(self, buffer_size=1000): self.buffer = deque(maxlen=buffer_size) self.processing_queue = queue.Queue() self.running = False self.setup_logging() def setup_logging(self): logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) self.logger = logging.getLogger(__name__) def analyze_sentiment(self, text): """ Analyze sentiment of given text using TextBlob. Returns: (polarity, subjectivity) Polarity: -1 to 1 (negative to positive) Subjectivity: 0 to 1 (objective to subjective) """ try: processed_text = preprocess_text(text) analysis = TextBlob(processed_text) return { 'text': text, 'processed_text': processed_text, 'polarity': analysis.sentiment.polarity, 'subjectivity': analysis.sentiment.subjectivity, 'sentiment': self.get_sentiment_label(analysis.sentiment.polarity), 'timestamp': datetime.now().isoformat() } except Exception as e: self.logger.error(f"Error analyzing sentiment: {str(e)}") return None def get_sentiment_label(self, polarity): """Convert polarity score to human-readable label""" if polarity > 0.3: return 'positive' elif polarity < -0.3: return 'negative' else: return 'neutral' def start_processing(self): """Start the background processing thread""" self.running = True self.processing_thread = threading.Thread(target=self._process_queue) self.processing_thread.start() def stop_processing(self): """Stop the background processing thread""" self.running = False self.processing_thread.join() def _process_queue(self): """Background thread to process texts in queue""" while self.running: try: text = self.processing_queue.get(timeout=1) result = self.analyze_sentiment(text) if result: self.buffer.append(result) self.logger.info(f"Processed text with sentiment: {result['sentiment']}") self.processing_queue.task_done() except queue.Empty: continue except Exception as e: self.logger.error(f"Error in processing thread: {str(e)}") def add_text(self, text): """Add text to processing queue""" self.processing_queue.put(text) def get_recent_results(self, limit=100): """Get most recent sentiment analysis results""" return list(self.buffer)[-limit:] def get_sentiment_summary(self): """Get summary statistics of recent sentiments""" results = self.get_recent_results() if not results: return {} sentiments = [r['sentiment'] for r in results] return { 'positive': sentiments.count('positive') / len(sentiments), 'neutral': sentiments.count('neutral') / len(sentiments), 'negative': sentiments.count('negative') / len(sentiments), 'total_processed': len(sentiments) } ``` 4. Quality Assurance Testing Strategy: ```python import unittest class TestSentimentAnalyzer(unittest.TestCase): def setUp(self): self.analyzer = RealTimeSentimentAnalyzer() def test_positive_sentiment(self): result = self.analyzer.analyze_sentiment("I love this product!") self.assertGreater(result['polarity'], 0) self.assertEqual(result['sentiment'], 'positive') def test_negative_sentiment(self): result = self.analyzer.analyze_sentiment("This is terrible!") self.assertLess(result['polarity'], 0) self.assertEqual(result['sentiment'], 'negative') ``` Evaluation Metrics: - Accuracy - Processing speed (texts/second) - Queue latency - System resource usage 5. Production Considerations Scaling Strategies: 1. Horizontal scaling: - Deploy multiple analyzer instances - Use load balancer - Implement message queue (Redis/RabbitMQ) 2. Monitoring Setup: ```python import psutil import time def monitor_performance(analyzer): while True: stats = analyzer.get_sentiment_summary() print(f"Processed: {stats['total_processed']}") print(f"CPU Usage: {psutil.cpu_percent()}%") print(f"Memory Usage: {psutil.virtual_memory().percent}%") time.sleep(60) ``` Usage Example: ```python # Initialize and start analyzer analyzer = RealTimeSentimentAnalyzer() analyzer.start_processing() # Process some text analyzer.add_text("I'm really enjoying this new feature!") # Get results results = analyzer.get_recent_results() summary = analyzer.get_sentiment_summary() # Clean shutdown analyzer.stop_processing() ``` Common Issues & Solutions: 1. High CPU Usage - Increase buffer size - Implement batch processing - Add rate limiting 2. Memory Leaks - Monitor buffer size - Implement periodic cleanup - Use memory profiling 3. Slow Processing - Optimize preprocessing - Implement caching - Consider batch processing Would you like me to elaborate on any particular aspect or provide more specific examples for your use case?
Browse Marketplace