Example input
[e.g., clicks, page views, purchases]: clicks, purchases, product views
[e.g., 5,000 events per second]: 10,000 events per second
[e.g., average session duration, total revenue per hour]: total revenue per hour, average cart size
[e.g., 2 seconds]: 1 second
[e.g., RESTful, GraphQL]: RESTful
[e.g., PostgreSQL, MongoDB, InfluxDB]: PostgreSQL
[e.g., promotional events]: Black Friday promotions
[e.g., fault-tolerant]: fault-tolerant
[e.g., minimal downtime]: 1 minute
[e.g., Apache Kafka, Redis Streams, AWS Kinesis]: Apache Kafka
[e.g., Flink, Spark, Celery]: Flink
[e.g., dropped events, data duplication]: dropped events
[e.g., Prometheus, CloudWatch, Datadog]: Prometheus
Example output
### System Design for Real-Time Analytics Dashboard
#### **Architecture Overview**
The system consists of three primary layers:
1. **Data Ingestion Layer**
- Ingests raw event data using **Apache Kafka**.
2. **Data Processing Layer**
- Processes and aggregates metrics in real-time using **Apache Flink**.
3. **Data Storage and Query Layer**
- Stores data in **PostgreSQL** optimized for both high write throughput and efficient querying.
---
### **Architecture Components**
1. **Event Ingestion with Kafka**
- **Role:** Captures high-velocity event streams, ensuring durability and scalability.
- **Mechanism:** Kafka topics are partitioned to handle up to 10,000 events per second with minimal latency.
2. **Real-Time Processing with Apache Flink**
- **Role:** Processes event streams, calculates metrics (e.g., total revenue per hour, average cart size), and handles data spikes.
- **Mechanism:**
- Streams events from Kafka.
- Aggregates events using sliding windows (e.g., hourly windows for revenue).
3. **Database Storage with PostgreSQL**
- **Role:** Persists aggregated metrics and event data.
- **Configuration:**
- High-write throughput: Leverages **partitioned tables**.
- Efficient queries: Utilizes **GIN indexes** for JSONB data if needed.
4. **API Layer**
- **Role:** Exposes RESTful endpoints for querying metrics.
- **Framework:** Flask (Python) or Express.js (Node.js).
5. **Monitoring with Prometheus**
- **Role:** Tracks system health, metrics, and alerting.
6. **Reliability Layer**
- Fault tolerance is ensured by Kafka's replication and Flink’s checkpointing.
---
### **Database Recommendation**
- **PostgreSQL**
- **Pros:**
- High scalability via table partitioning and indexing.
- Supports concurrent writes and efficient queries.
- **Comparison:**
- Compared to NoSQL (e.g., MongoDB), PostgreSQL ensures ACID compliance and richer query capabilities, suitable for structured event data.
---
### **Data Processing Pipeline**
1. **Ingestion:**
- Kafka captures raw events from user interactions.
- Events are serialized using Avro or JSON and streamed to specific Kafka topics (e.g., `clicks`, `purchases`).
2. **Real-Time Processing:**
- Flink consumes Kafka streams, applies transformations, and computes sliding window aggregates.
- Flink writes results back to a new Kafka topic for API consumption or directly to PostgreSQL.
3. **Metrics Calculation:**
- Total revenue: Aggregates purchase events.
- Average cart size: Divides total items in purchases by the count of purchase events.
---
### **Sample Code Snippets**
#### 1. API Endpoint for Aggregated Metrics
```python
from flask import Flask, jsonify
import psycopg2
app = Flask(__name__)
@app.route('/metrics', methods=['GET'])
def get_metrics():
conn = psycopg2.connect("dbname=analytics user=admin password=secret")
cursor = conn.cursor()
query = """
SELECT metric_name, metric_value
FROM metrics
WHERE timestamp >= NOW() - INTERVAL '1 HOUR';
"""
cursor.execute(query)
results = cursor.fetchall()
conn.close()
return jsonify(results)
if __name__ == '__main__':
app.run(debug=True)
```
#### 2. Writing Data to PostgreSQL
```python
import psycopg2
def write_event(event):
conn = psycopg2.connect("dbname=analytics user=admin password=secret")
cursor = conn.cursor()
insert_query = """
INSERT INTO events (event_type, event_data, timestamp)
VALUES (%s, %s, NOW());
"""
cursor.execute(insert_query, (event['type'], event['data']))
conn.commit()
conn.close()
```
#### 3. Handling Data Spikes with Flink
```python
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.table import StreamTableEnvironment, EnvironmentSettings
env = StreamExecutionEnvironment.get_execution_environment()
settings = EnvironmentSettings.new_instance().in_streaming_mode().build()
table_env = StreamTableEnvironment.create(env, environment_settings=settings)
table_env.execute_sql("""
CREATE TABLE input_events (
event_type STRING,
event_value DOUBLE,
ts TIMESTAMP(3),
WATERMARK FOR ts AS ts - INTERVAL '1' SECOND
) WITH (
'connector' = 'kafka',
'topic' = 'event_topic',
'properties.bootstrap.servers' = 'localhost:9092',
'format' = 'json'
)
""")
table_env.execute_sql("""
CREATE TABLE output_metrics (
metric_name STRING,
metric_value DOUBLE,
timestamp TIMESTAMP(3)
) WITH (
'connector' = 'jdbc',
'url' = 'jdbc:postgresql://localhost:5432/analytics',
'table-name' = 'metrics',
'username' = 'admin',
'password' = 'secret'
)
""")
table_env.execute_sql("""
INSERT INTO output_metrics
SELECT
'total_revenue' AS metric_name,
SUM(event_value) AS metric_value,
TUMBLE_END(ts, INTERVAL '1' HOUR) AS timestamp
FROM input_events
WHERE event_type = 'purchase'
GROUP BY TUMBLE(ts, INTERVAL '1' HOUR)
""")
```
---
### **Fault Tolerance Strategy**
1. **Handling Dropped Events:**
- Kafka’s replication factor ensures durability.
- Flink retries failed tasks automatically.
2. **Failure Recovery:**
- Flink uses state checkpointing.
- PostgreSQL allows point-in-time recovery.
3. **System Monitoring:**
- Prometheus tracks Kafka lag, Flink processing times, and database performance.
---
### **Architecture Diagram**
A diagram representing the architecture will include:
- **Kafka**: For ingestion, illustrated as the entry point.
- **Flink**: For real-time processing.
- **PostgreSQL**: For storage.
- **REST API**: For exposing metrics.
- **Prometheus**: For monitoring.
Let me generate the visualization.
Here is the architecture diagram for the real-time analytics dashboard system, showcasing all the components and data flow. Let me know if you need further adjustments or clarifications!