PromptBase
Close icon
General
Home
Marketplace
Hire
Create
Login
Sell
Explore
🤖 GPT

Snippet Code Writer For Data Visualizati

Snippet Code Writer For Data Visualizati gpt prompt mini thumbnail
TestedTick icon
TipsTick icon
4 examplesTick icon
Snippet Code Writer for Data Visualization
...more
$3.99
Get prompt
After purchasing, you will gain access to the prompt file which you can use with GPT or the app builder. You'll receive 20 free generation credits with this purchase. By purchasing this prompt, you agree to our terms of service.
3 weeks ago

Prompt Details

Model
Chat - GPT-4o (gpt-4o)
Token size
103 ($0.00515 / call)
Example input
[ data type ]: sales data by region [ programming language and library ]: Python (Matplotlib)
Example output
Here's a Python code snippet using `Matplotlib` to create a clear and visually appealing bar chart for "Sales Data by Region." This code assumes we have a dataset with sales data for each region, but if any data is missing, it will handle that gracefully. ```python import matplotlib.pyplot as plt import numpy as np import pandas as pd # Sample sales data by region, including a NaN value to simulate missing data data = { 'Region': ['North', 'South', 'East', 'West', 'Central'], 'Sales': [15000, np.nan, 12000, 18000, 14000] } # Convert the data to a DataFrame for easier manipulation df = pd.DataFrame(data) # Handle missing data by filling NaN values with 0 (or use an average, median, etc.) df['Sales'] = df['Sales'].fillna(0) # Set up figure and axis for a clear layout plt.figure(figsize=(10, 6)) # Bar chart for sales by region plt.bar(df['Region'], df['Sales'], color=['#4c72b0', '#55a868', '#c44e52', '#8172b2', '#ccb974']) # Add labels and title to make the chart clear plt.title('Sales by Region', fontsize=16, fontweight='bold') plt.xlabel('Region', fontsize=12) plt.ylabel('Sales ($)', fontsize=12) # Add value labels on top of each bar for clarity for index, value in enumerate(df['Sales']): plt.text(index, value + 500, f"${int(value):,}", ha='center', fontsize=10) # Display gridlines to improve readability of sales values plt.grid(axis='y', linestyle='--', alpha=0.7) # Optimize layout to avoid overlapping and make the chart easier to read plt.tight_layout() # Show the plot plt.show() ``` ### Explanation 1. **Data Creation**: We create a sample dictionary with "Region" and "Sales" data. One region has a `NaN` value to demonstrate missing data handling. 2. **Missing Data Handling**: We fill any missing sales values with `0` (or you could replace with an average, median, etc.). 3. **Chart Setup**: We use a bar chart, as it is suitable for comparing categorical data (sales across regions). 4. **Custom Colors**: Each bar has a distinct color for visual appeal. 5. **Labels and Titles**: Clear labels and a bold title enhance readability. 6. **Value Labels**: Values are added on top of each bar to show exact sales figures. 7. **Gridlines**: Horizontal gridlines improve readability. 8. **Layout Optimization**: `plt.tight_layout()` is used to avoid any text overlap, ensuring a clean look.
Browse Marketplace