PromptBase
Close icon
General
Home
Marketplace
Hire
Create
Login
Sell
Explore
πŸ€– GPT

Time Series Forecasts With Deep Learning

Time Series Forecasts With Deep Learning gpt prompt mini thumbnail
2Heart icon
Favorites
186Eye icon
Views
TestedTick icon
TipsTick icon
✨ Deep dive into time series forecasting with deep learning. Start with temporal data preprocessing and exploratory data analysis. Use architectures like LSTM, GRU, Bidirectional LSTM and 1D-CNN, comparing their performance. The workflow includes hyperparameter optimization and error analysis, ending with a model summary. The result is a comprehensive Python code for your time series dataset. Provided in the instructions: πŸ“Œ 2nd prompt to develop deep models πŸ“Œ Hyper-parameter optimization
...more
$6.99
Get prompt
After purchasing, you will gain access to the prompt file which you can use with GPT or the app builder. You'll receive 20 free generation credits with this purchase. By purchasing this prompt, you agree to our terms of service.
Updated: Over 1 month ago

Prompt Details

Model
Chat - GPT-4 (gpt-4)
Token size
592 ($0.01780 / call)
Example input
Time series dataset (any) or just the prompt.
Example output
First part of the code: (output) Certainly! Here's the Python code that follows the tasks outlined in the prompt: ```python # Import necessary libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_absolute_error, mean_squared_error from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, GRU, Bidirectional, Dense, Flatten, Conv1D, MaxPooling1D from tensorflow.keras.optimizers import Adam # Load your data # data = pd.read_csv('[YOUR FILE PATH]') # For the sake of this example, I will use a placeholder. Replace this with your data. data = pd.DataFrame({'date': pd.date_range(start='2023-01-01', periods=100, freq='D'), 'value': np.random.randn(100).cumsum()}) # Task 1: Data Extraction and Preparation plt.plot(data['date'], data['value']) plt.xlabel('Date') plt.ylabel('Value') plt.title('Initial Data Visualization') plt.show() # Ensure chronological order data = data.sort_values(by='date') # Normalize data scaler = MinMaxScaler() data['normalized_value'] = scaler.fit_transform(data[['value']]) # Task 2: Data Splitting train_size = int(0.8 * len(data)) train_data = data[:train_size] test_data = data[train_size:] def create_sequences(data, sequence_length): x, y = [], [] for i in range(len(data) - sequence_length): x.append(data[i:i + sequence_length].values) y.append(data[i + sequence_length]) return np.array(x), np.array(y) sequence_length = 10 X_train, y_train = create_sequences(train_data['normalized_value'], sequence_length) X_test, y_test = create_sequences(test_data['normalized_value'], sequence_length) # For the sake of demonstration, we will define models for LSTM and GRU only. Extend as needed for other architectures. # Task 4: Model Selection and Forecasting # LSTM lstm_model = Sequential([ LSTM(50, input_shape=(X_train.shape[1], X_train.shape[2]), return_sequences=True), LSTM(50), Dense(1) ]) lstm_model.compile(optimizer='adam', loss='mse') lstm_model.fit(X_train, y_train, epochs=30, batch_size=8) # GRU gru_model = Sequential([ GRU(50, input_shape=(X_train.shape[1], X_train.shape[2]), return_sequences=True), GRU(50), Dense(1) ]) gru_model.compile(optimizer='adam', loss='mse') gru_model.fit(X_train, y_train, epochs=30, batch_size=8) # Extend for Bidirectional LSTM and 1D CNN... # Task 6: Error Calculation def evaluate_model(model, X_test, y_test): y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) rmse = np.sqrt(mean_squared_error(y_test, y_pred)) return mae, rmse lstm_mae, lstm_rmse = evaluate_model(lstm_model, X_test, y_test) gru_mae, gru_rmse = evaluate_model(gru_model, X_test, y_test) # Output metrics for the models print("LSTM - MAE:", lstm_mae, "RMSE:", lstm_rmse) print("GRU - MAE:", gru_mae, "RMSE:", gru_rmse) # Task 7: Summary & Visualization (limited to LSTM for demonstration) plt.plot(y_test, label="Actual") plt.plot(lstm_model.predict(X_test), label="Predicted by LSTM") plt.legend() plt.title('LSTM Forecast vs Actuals') plt.show() # Note: To make this code more comprehensive, add hyperparameter tuning, Bi-directional LSTM, 1D CNN model, and further visualizations. ``` This code provides a basic structure for executing time series forecasting with deep learning as described in your meta-prompt. To fully implement all the tasks, you'd need to expand the model-building, add the hyperparameter tuning, and make additional visualizations. Remember to replace the placeholder data with your actual time series data. β€”β€”β€”- Certainly! Let's continue with building the remaining models and then introduce hyperparameter tuning using grid search as an example: ```python # Continuing from where we left off... # Bidirectional LSTM bidirectional_model = Sequential([ Bidirectional(LSTM(50, return_sequences=True), input_shape=(X_train.shape[1], X_train.shape[2])), Bidirectional(LSTM(50)), Dense(1) ]) bidirectional_model.compile(optimizer='adam', loss='mse') bidirectional_model.fit(X_train, y_train, epochs=30, batch_size=8) # 1D CNN cnn_model = Sequential([ Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(X_train.shape[1], X_train.shape[2])), MaxPooling1D(pool_size=2), Flatten(), Dense(50, activation='relu'), Dense(1) ]) cnn_model.compile(optimizer='adam', loss='mse') cnn_model.fit(X_train, y_train, epochs=30, batch_size=8) # Task 6: Error Calculation (Continued) bidirectional_mae, bidirectional_rmse = evaluate_model(bidirectional_model, X_test, y_test) cnn_mae, cnn_rmse = evaluate_model(cnn_model, X_test, y_test) print("Bidirectional LSTM - MAE:", bidirectional_mae, "RMSE:", bidirectional_rmse) print("1D CNN - MAE:", cnn_mae, "RMSE:", cnn_rmse) # Task 5: Hyperparameter Tuning from tensorflow.keras.wrappers.scikit_learn import KerasRegressor from sklearn.model_selection import GridSearchCV def create_lstm_model(neurons=50, optimizer='adam'): model = Sequential([ LSTM(neurons, input_shape=(X_train.shape[1], X_train.shape[2]), return_sequences=True), LSTM(neurons), Dense(1) ]) model.compile(optimizer=optimizer, loss='mse') return model lstm_regressor = KerasRegressor(build_fn=create_lstm_model, epochs=30, batch_size=8, verbose=0) parameters = { 'neurons': [30, 50], 'optimizer': ['adam', 'rmsprop'], 'batch_size': [8, 16], 'epochs': [30, 50] } grid_search = GridSearchCV(estimator=lstm_regressor, param_grid=parameters, scoring='neg_mean_squared_error', cv=10) grid_search = grid_search.fit(X_train, y_train) best_parameters = grid_search.best_params_ best_accuracy = grid_search.best_score_ print("Best Parameters:", best_parameters) print("Best Accuracy:", best_accuracy) # You can similarly extend hyperparameter tuning for other models like GRU, Bidirectional LSTM, and 1D CNN. ``` This code expands upon model building for Bidirectional LSTM and 1D CNN, and adds hyperparameter tuning using grid search for the LSTM model. The grid search process can be time-consuming depending on the range and number of hyperparameters being tuned. For the sake of simplicity, the hyperparameters tuned for LSTM here are limited. For a more comprehensive approach, you would add additional hyperparameters and perform tuning for other models as well.
Browse Marketplace